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EIMTODUCIrON

'Postmortem' studies of crack growth-induced structural failure are often prompted by an
unanticipated failure that also has economic sigaificance. Such is the case here. In August 1990, a
nearly finished cannon tube suffered an unexpected and complete failure. A crack grow from a notch in
the 285-mm outer diameter (OD) of the tube, down the tube axis for 1.7 m, and through to the 157-mm
inner diameter (ID) over most of the 1.7-m length, thereby ruining the tube. Figure 1 shows some aspects
of the configuration. At the time of the failure, the tube was being chromium plated with no externally
applied mechanical loads. The plating baths were above the tube ambient temperature, which can result
in applied transient thermal stress, but as shown in the upcoming analysis, these thermal stresses were of a
level too low to have bqen a primary cause of the failure. The unique residual stress state of the tube was
considered from the start to be a significant factor in the failure. Prior work (ref 1) showed the important
and deleterious effects of overstrain residual stresses on crack growth from a similar notch and tube
configuration. However, unlike the previous work that involved fatigue loading, this failure involved only
the sustained loads due to overstrain residual stresses and the low level thermal stresses mentioned
previously. Thus. environmentally-controlled cracking was the suspected cause of the failure, particularly
upon consideration of the acids commonly used in plating operations.

OBJECTIVE

The objective of this report is to decribe the tests and analyses used to identify the specific cause
of the cracking and related failure and to describe both the overall macrofailure process of the tube as a
structure, as well as the micromechanisms of the cracking that led to the failure. As the investigation
proceeded, some of the available fracture test and analysis methods from the technical literature were
modified in order to broaden their usefulness or improve their accuracy. Thus, a secondary objective of
the work became the development of modified and new test and analysis procedures for use in the
investigation and for general use in fracture testing.

MATERIAL AND ENVIRONMENTS

The tube that failed was machined from an A723 steel forging with mechanical properties and
chemical analysis as shown in Table 1. The tensile and fracture test results were the mean of two
circumferential orientation samples from a location near the failure. The circumferential orientation is
critical in most pressurized tubes and was the orientation of the failure (see Figure 1). The chemical
analysis was from direct reading emission spectrometer results from specimens near the failure location.
In general, the Table 1 results meet the requirements of A723, Grade 1, Class 4. The only exceptions are
the molybdenum content of 0.51 percent, which is somewhat above the 0.40 percent upper limit of Grade
1, and the Charpy energy of 25 J at -40*C, which is not the same as the 27 J at +50C requirement of Clua
4. However, these differences are not considered significant There appears to be no deficiency with the
tube based on material properties.

The chemical baths used with the tube are those typically used in chromium plating: sodium
hydroxide in water for electrocleaning: concentrated sulfuric acid + phosphoric acid for eloctropolishing;
chromic acid + sulfuric acid in water for plating; sodurm hydroxide in water for stripping of the plated
chromium, if necessary. The prime suspect environment for this failure was the electropolish bath,
because it was a mixture of concentrated acids including sulfuric acid, which is known to be highly
aggressive toward steels. The concentrations and test temperatures used for the electropolish solution with
the tube (and the subsequent modeling tests) are given in Table 1.



Table 1. Properties of Steel and Chemical Environment

A723 St~ee

Mechanical Yield Tensile Charpy Fracture
Properties Strength Strength Energy Toughness

(circumferential) (C-R orientation)

Measured 1207 MPa 1282 MPa 25 J 157 MPa mn"
1 400C +200C

Specified 1105 MPa 1205 MPa 27 J
min min +50C

Chemical Analasis (wt.%):

C Mn Mo Si Cr Ni V P S

Measured 0.33 0.60 0.51 0.13 1.03 2.11 0.11 0.010 0.009

Specified 0.35 0.90 0.40 0.35 0.80- 1.50- 0.20 0.015 0.015
max max max max 2.00 2.25 max max max

Acid Solution:

F Concentrated Concentrated Test Temperature
II 12SO, H3PO,

(98 wt.%) (85 wt.%) Cylinder Species

50 vol % 50 vol % 54"C 20-50C

FAILURE DETAILS AND MODELING TESTS

The tube was subjected to the plating baths mentioned previously, including the stripping bath,
which was required to remove uneven plating products. The sequence of baths was repeated, and the
failure was noted as the tube was removed from the stripping bath, which was again required to remove
uneven plating. The fact that the failure was noted following exposure to the sodium hydroxide stripping
bath placed the initial attenion on this environment. However, attention quickly shifted to the sulfuric
acid + phosphoric acid environment, because the latter is so much more aggressive. The electrolytic
cleaning, polishiug, plating. and stripping operations were performed with an electrode inserted in the ID
of the zube and with the entire tube subjected to the baths. Therefore, the failure, which was initiated at
the OD of the tube, was considered to be controlled by chemical environment and not by any
electrochemical process.

The crack extended 1.7 m along the tube axis and into the ID surface, as mentioned previously. It
initiated from and was guided by a 9.8-mm deep, 24-mm wide, 1.7-m long notch in the OD surface, (shown
schematically in Figure 1) with a notch root radii of 1.1 mm The maximum opening of the crack at the
notch root was 11.7 mm at a location about midway along the 1.7-m length of the crack. The fracture
surface was removed and examined and showed two distinct regions. The first was a dark colored region

2



emanating from one of the notch roots near the middle of the 1.7-m long overall fracture surface and is
believed to be an area of environmentally-controlled fracture. This region was generally covered with a
corrosion product and had a length of 430 mm, an average depth (from the notch root) of 5.6 mm, and a
maximum depth of 11.9 mm. The corrosion-covered region included two distinct areas, one near the
notch root having thinner, more uniform and adherent corrosion, and an area further from the notch
having darker, thicker, and more brittle and porous corrosion. The nature of these two areas is consistent
with the two complete plating cycles that were applied, with the second cycle removing some of the
corrosion product near the notch. The second region of the fracture surface had no corrosion and made
up the remainder of the fracture surface. It is believed to be an area of fast fracture.

To be sure that the understanding of the failure was correct-residual stress and the presence of
the acids caused environmental cracking that led to fast cracking-the following modeling tests and
analyses were performed. Environmental cracking threshold tests and plane-strain fracture toughness tests
were performed using samples of the failed tube and samples of the acid bath used to electropolish the
tube. Scanning electron microscope (SEM) fractographs and energy dispersive x-ray spectra of the tube
fracture surface were compared with similar results from the controlled laboratory tests. Stress intensity
factor relations were developed for the tube configuratioa and residual stress conditions, and comparisons
were made between the experimental and analytical results.

The following sections of this report describe the tests and analyses and their results and
implications.

TEST PROCEDURES

The most important test results required to model and understand the tube failure are a
demonstration of environmental cracking in the suspect environment and a measurement of a threshold K
value for cracking. Bolt-loaded specimens have clear advantages of simplicity for environmental testing,
and the work of Wei and Novak (ref 2) provides a comprehensive basis for this type of test. Reference 2
describes a bolt-loaded compact specimen with genetic 'arm' height-to-depth ratio, H/W, of 0.486 and the
detailed test procedures for environmental cracking tests with this specimen. Figure 2 shows the specimen
used here, as suggested in Reference 2.

Several aspects of the Wei and Novak procedure for environmental cracking tests should be
emphasized. One recommendation found to be critical in interlaboratory tests of environmentally-assisted
cracking (ref 2) is believed to be equally important in these tests, that is, the application of the test
environment before the application of the load. As shown by the test results, if this recommendation had
not been followed, the fast environmental tracking may not have been observed, and it was this fast
cracking that led to the failure of the tube. The recommendation to apply environment before load allows
breakage of- protective layers at the notch tip and thereby exposure to the environment of fresh metal, a
mechanism often proposed for environmental cracking.

Two aspects of the procedure (ref 2) were modified in the tests here. First, in two of the tests the
usual fatigue precrack was omitted in order to duplicate the 1.1-mm notch root radius of the tube that
failed. Other tests used a precrack, as shown in Table 2. A second modification of the Wei and Novak
procedures was the development and use of a different expression for the ratio of applied stress intensity
to applied crack-mouth opening, KM,. The expression from Reference 2 is

3



KW"'(a/W)"/Ev a f,(a/W) / f2(a/W) (1)

f 30.96(a/W). 19.8(a/W)l + 730.6(aW)3

- 1186.3(a/W)M' + 754.6(a/W)3

f2 exp(4.495 - 16.130(a/W) + 63.838(a/W) 2

. 89.125(a/W)l + 46.815(aW)']

for X/% = 0.2-3; /IW - 0.486; 0.3 a a/W a 0.8

where E is elastic modulus and the other symbols are defined in Figure 2. Equation (1) was fitted to
reliable numerical results (ref 3), but it is relatively complex, and (as stated in Reference 2) "there are
uncertainties associated with the K calibration which have not been fully addressed." Therefore, a
different K expression was developed, as shown in Figure 3. A much lower order polynomial was used to
fit a parameter that included the ratio K/v, of prime importance for the bolt-loaded compact specimen, but
also included the functional form of the deep crack limit of Kyv for the specimen. This limit can be
obtained from two limit solutions for the remotely applied moment, M, available from Tada, Paris and
Irwin (ref 4) in a manner similar to that from prior work (ref 5)

tim K = 3.975 M/B (W-a)m  (2)
a-.w

tim 9 - 15.8 M/EB (W-a)2  (3)
a-.W

combined with the limit relation for crack opening angle, 9,

limra - v/(W + x) (4)
a-,W

The general result for compact specimens (independent of 1/W) is

irm [KW"'/Ev(. - a/W)"'1 = 0.2516/(l + X/W) (5)

and for the X/W - 0.255 of interest here,

tim [KW"•fEv(l - aM/V)L/2] = 0.2005 (6)

This is the limit shown in Figure 3 and used in a cubic polynomial fit, resulting in the following K/v
expression

KW"/Ev(l-a/W)"2 - 0.654- 1.88(a/W)
+ 2.66(a/W)- 1.233(awW)' (7)

for X/W - 0.255; H/W - 0.486; 03 a a/W z 1.0

This expression fits the numerical results of Newman (ref 3) over the range 0.3 ! a/W > 0.8
within 0.6 percent and the deep crack limit within 0.2 percent. Note that the fit of the Wei and Novak
expression to Newman's results is not as good. Also, for a/W > 0.8, crack lengths of importance in these
tests and in general for displacement-loaded compact specimens, the Wei and Novak expression does not
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approach the deep crack limit. Equation (7) was used for all calculations of applied K in the bolt.loaded
tests.

Table 2. Specimens and Test Conditions

Test Notch Conditions Initial Load Application Test Duration
a,/W Precrack In Vo, mm K., MPaV/m Hous

3 0.39 none air 0.62 100 120

ic 0.45 2 mm acid 0.70 114 4

7 0.44 2 mm acid 0.66 110 2400

15 0.44 2 mm acid 0.50 82 1540

16 0.44 2 mm acid 0.33 54 1540

17 0.40 none acid 0.93 168 0.1

Two K,. tests were conducted using the arc tension specimen of ASTM Test for Plane.Strain
Fracture Toughness of Metallic Materials (E-399) with thickness B - 38 mm. The results, 156 and 159
Mpav'm, had a mean K,/K., value of 1.03, well within the 1.10 requirement, but had a mean 2.5 (Y./o,.)2

value of 43 mm, somewhat larger than B. Since only one of these basic test requirements was not met,
and by a relatively small margin, the test results are believed to give a good measure of fracture toughness.

Referring again to Table 2, the general test procedure was to precrack (except for specimens #3
and #17) at a maximum K of about 50 MPaV'm. apply a few drops of the acid solution at laboratory
ambient temperature (20*C) and immediately (within one minute) apply an initial displacement, vo, and
then immerse (within about five minutes) in the acid solution held at a temperature of 54*C. The total
test durations are listed in Table 2. The mean crack depth was determined from microscopic
measurements on both surfaces with various inspection frequencies. The first sample listed in the table
(#3) was not subjected to the few drops of acid solution before load application. As discussed in the next
section, the results were quite different.

RESULTS AND DISCUSSION

Least Severe Model Test

Of the six specimens tested, the first, #3, had a notch the same radius as the tube, no precrack,
and was loaded in air to K. - 100 MPa•/m. These test conditions were intended to model the least severe
conditions that could have been present in the tube, that is, no sharpening of the notch and no acid
present as the stress was applied. The K. value of 100 MPaVm was selected based on the following. The
circumferential direction residual stress, cr., at the tube OD was calculated using (ref 6)

a•/v,. - 1 - 2 ln(f/8) / [(813)' - 1] (8)

where P and 8 are the outer and inner radii of the tube, as shown in Figure 1. Equation (8) gives the
stress for a 100 percent overstrained tube, that is, one in which the plastic straining has proceeded
completely through the tube wail due to the application of overpressure or mandrel expansion to the tube.
The failed tube was 100 percent overstrained, as verified by a destructive slitting test of a ring from the
tube. The result from Eq. (8), a1 - 57b MPa, used with the expression for K for a short edge crack under
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remote tension

Ki a 1.12 a& (wa)' (9)

gives a calculated value of K.t - 114 MPav'm for a 9.8.mm deep notch. This value may be only an
estimate of the effective K in the tube because Eq. (9) assumes a sharp crack, the tube contained a notch,
and because the eq ation ignores the stress gradient through the tube wall. Nevertheless, Eq. (9) does
give a reasonable estimate of K for a cracked tube with residual stress, based on the following comparison
of Ka with K,, Using ow, - 578 MPa, as before, and the average and maximum total crack depths, 15.4
and 21.7 mm, gives K, values of 142 and 169 MPav'm, respectively, which bracket the measured 1(,. 157
MPa/Vm. Note that in these calculations, a is the total depth of the notch (9.8 mm) plus the crack depth.

The results of the specimen #3 test of the least severe conditions that could have been present in
the tube were essentially negative. Although small cracks were noted in the disturbed area near the
machined surfaces of the notch, no crack growth was observed by optical or electron microscopic
examination following 120 hours of acid exposure at 54°C. This indicates that the conditions were more
severe in the failed tube. Although no large inclusions were noted on the tube fracture surface,
manganese sulfide inclusions are always present to some extent in this type of steel and could have
effectively sharpened the notch.

rvnce Tests

The next four specimens were precracked (about 2-mm extension of notch), subjected to a few
drops of acid, and then loaded: two specimens to a high load, which corresponded to the tube loading, and
one each to an intermediate and low load. The high load tests had dramatically different results than test
#3. Cracking was noted almost immediately upon loading of specimens #10 and #7; about five minutes
after applying drops of acid to the notch and crack area and about three minutes after applying the load,
several millimeters of crack growth could be seen with the unaided eye on both sides of the specimen.
The tests were continued in the 54"C acid bath as described previously-, test #10 was ended at 4 hours, in
an attempt to obtain a fracture surface relatively unaffected by corrosion products, and test #7 continued
for 2400 hours to obtain a threshold K for cracking in this environment.

Figure 4 is a plot of crack depth and applied K versus exposure time for the two high load
precracked tests. The fast "three minute" cracking noted earlier occurred very near the left ordinate; for
specimen #7, the first two points show crack growth from 21 mm (the total depth of notch plus precrack)
to 28 mm, while K changes from KV = 110 MPaVm to K = 88 MPaVm after 0.05 hour of exposure. This
"three minute" cracking is followed by a region of steadily increasing crack depth and decreasing K, and
finally by a region of relatively constant crack depth and K.

The nature of the cracking in this tube is essentially the same as hydrogen stress cracking
described by Uhlig and Revie (ref 7). They describe cracking of martensitic steels that occurs within a few
minutes upon exposure to acid solutions and an applied or residual tensile stress. All of these conditions
are met in the case of this cylinder, and, as already noted, both the acid environment and the tensile stress
are particularly severe.

The three regions of behavior in Figure 4 can be explained by a plot of crack growth rate versus
applied K, as seen in Figure 5. A five-point floating average procedure was used to calculate da/dt, in a
manner similar to the secant method of ASTM Test for Constant-Load-Amplitude Fatigue Crack Rates
Above 10' m/Cycle (E-647). The crack depth and time values for the n+2 and the n-2 data points were
used to calculate An/At, which was plotted versus K of the middle data point set of five. If the n+ I and
n-I data points had been used in Figure 5, the result would have been similar but with more scatter. It is
interesting to note the similarity of the trend of the data with the classic three regions of environmental
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crack growth rate behavior (ref 7): region I at low K1 approaching a threshold; region II at intermediate K
and a constant daldt; region III at high K, approaching the critical K for fast fracture. This similarity to
the classic behavior gives further verification that environmental effects controlled the tube failure.

Figures 6 and 7 compare results of crack depth and applied K versus exposure time for three
levels of initial load, TC,. The intermediate and low initial K3 tests, #15 and #16, respectively, showed no
initial fast cracking, but otherwise the three sets of results were generally similar. Note in Figure 7 that
the applied K after about 1500 hours of exposure approached a relatively constant K value for very deep
cracks in the three tests. These results are a useful measurement of a threshold K for cracking for these
tests and are summarized in Table 3. One of the three tests (#7) was continued further to a total of 2404
hours of exposure. There was no signficant change in a/W (still 0.98) or applied K (18.0 MPaV'm).

Table 3. 1540-Hour Threshold Values of K for A723 Steel
in HSO, + HPO, Environment at WC

Test # Crack Depth Initial Load Test Duration Threshold

a/W K., MPav'm Hours K,, MPav'm

7 0.98 110 1588 18.6

i5 0.96 82 1540 19.0

16 0.94 54 1540 16.2

mean: 17.9

std dev 1.5

Plane-Strain Limit

One aspect of concern in the apparent threshold values discussed in Figure 7 and Table 3 was the
notably deep cracks in the tests. Even though the expression used to calculate K, Eq. (7), was accurate for
a/W -- 1, there is still the concern tha the Irwin plastic zone may become significant in size relative to the
remaining uncracked ligament as a/W -- 1. If this occurred, the threshold values would be suspect due to
loss of plane-strain constraint. The following analysis was performed to develop specimen size and crack
depth criteria for the displacement-loaded compact specimen that would ensure plastic zones small enough
to maintain plane-strain conditions. Starting with the relation for adequate specimen size relative to
plastic zone size used in ASTM Test E.399

(W-a) a 2.5(Kaa/,') 1  (10)

and combining Eq. (10) with Eq. (5), gives an expression for a dimensionless factor that defines the ratio
of vo to W required for plane-strain conditions

=•'. = Ev/a'.,W 5 2.51 (1 + X/W) (11)

For a material with given values of a., and E, if the factor, which could be called a plane-strain limit
factor, rl, is less than the specified value, then the test results are valid with respect to plastic zone size.
Note the simplicity of the expression, particularly that valid results can be predicted for the deepest of
cracks. However, considering the similar form of Eqs. (5) and (10), specifically the fact that (W-a) varies
as K2 in both expressions, the simple result is not surprising. A physical interpretation is that the plastic
zone size and the remaining ligament size have a constant ratio for the displacement-loaded specimen.
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Therefore, for cracks deep enough that the limit solution of Eq. (5) controls K/v, Eq. (11) can be used and
cracks of any depth can give valid results. It is clear from the nearly constant values in Figure 3 for 0.6 S
a/W S I that the limit solution controls K/V over this range.

Exprssious for the plane-strain limit factor for two commonly used displacement-loaded

specimens follow directly from Eq. (11). For the bolt-loaded compact specimen, the expression is

, Ev7,W S 3.15 for X/W 0.255 (12)

Referring to Table 2, the first five tests listed met this criterion, which includes all the tests with deep
cracks. For the wedge-loaded compact specimen of ASrM Test for Piano-Strain Crack-Arrest Fracture
Toughness, K., of Forritic Steels (E-1221), the expression is

mt, = Ev/oaW S 3.14 for X/W = 0.250 (13)

Notched Tet and Thermal Stress

One further crack growth test was performed. #17 listed in Table 2. The sam mple had the 1.1-mm
radius notch with no precrack, was subjected to acid in the notch (at 20C), and then bolt-loaded to a v.
about 50 percent higher than #3. Since specimen #3 bad shown no crack growth from a notch when
loading preceded the application of the acid, this further test explored the application of acid before
loading and when loading to a higher level The displacement was increased gradw.Uy so that K increased
from 100 to 168 MPaVm in about two minutes, whereupon cracking began. After about three minutes, the
crack grew 16 mm, and the specimen was broken apart for fracture surface examination.

The results of specimen # 17 suggest that a precrack is not required for fast euvironmental
cracking in this material and environment, but environmental contact before loading does seem to be
required. A question arises as to a source of loading in the tube that would have occurred after contact
with the acid. The following answer is proposed. Transient thermal stresses caused by the sudden entry of
the tube into the hot acid would reach their maximum level several seconds after entry of the tube. The
magnitude of thes stresses can be approximated by the steady state stresses in a tube with the OD held at
the higher temperature, S4*C, and the ID at ambient temperature, 20rC. An expression for the stress at
the tube OD under these conditions (ref 8) and concentrated by the stress concentration factor, k, of the
notch is

a-r - kATaE(1 -2 ln(.f/8)/(P2/62 - 1)]42(1-i.) ln(,1/5)] (14)

Using Eq. (14) with AT - 34C, k - 6 from prior work (ref 1), a = 12- C (ref 9), and Poisson's
ratio, ik - 0.3, a compressive thermal stress at the notch tip of 293 MPa is predicted. If the effect of the
loading following environmental contact is to break brittle protective films and thereby expose fresh metal
to the acid, it should not matter whether the stress is compressive or tensile, particularly when it is
concentrated at the notch tip. Following this reasoning, thermal loading could have provided the critical
loading that followed the acid contact in the tube failure process.

FrctomMnhY and Spectra

This final section gives fractographic results corresponding to some of the crack growth results
already presented. The objective was to corroborate (or refute) the belief that hydrogen stress cracking
was the cause of the tube failure and to show other important features of the tests.

Figure 8 shows low magnification views of two fracure surfaces with corrosion products present.
In the optical photo, Figure 8(a), the corrosion did not obscure the area near the fatigue precrack
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(bottom) nor the area near the last ligament, which was broken in air after removal from the acid (top),
both of which showed that the crack front was quite straight. The light shaded corrosion product has the
appearance of a non-straight crack front, but careful examination showed the crack was straight in this
area as well. A straight crack is an important requirement for the deep crack tests here, in complement to
the proposed KIV expression and plane-strain requirements already discussed. The SEM photo. Figure
8(b), is a portion of the fatigue precrack (bottom) and the subsequent environmental crack. Secondary
cracking can be seen in the environmentally affected area of the fracture surface.

A few areas could be found on the environmental cracking fracture surfaces that were relatively
free of corrosion products. Figure 9 shows high magnification SEM fractographs that compare a
corrosion.free product area from the tube -ith an area ahead of the environmental cracking. Figure 9(a),
from an area just ahead of the notch, shows areas of secondary cracking and intergranular cracking. both
of which have been associated with environmental cracking.

Evidence of manganese sulfide stringers is also clear, aligned with the tube axis (horizontal in the
photo). Immediately ahead of the area of environmental cracking, the appearance is typical dimpled
rupture, as expected for fast, Kft-type fracture, as seen in Figure 9(b). Figure 10 shows relatively
corrosion-free areas of two specimens believed to be areas of environmental cracking, and the clear
indications of secondary cracking and intergranular cracking confirm this belief. Note the similarity of the
fracture appearance in the modeling specimens of Figure 11 and that from the tube in Figure 9(a).

Energy dispersive x-ray spectra were taken at many of the areas of SEM study. Figure II presents
the key results from areas believed to be due to environmental cracking; two from the failed tube and two
from a test specimen. Th'e results were obutined using a relatively low voltage for this process, 10 kV, in
order to focus more on the surface layers of the sample than on the metal substrate. Spectra (a) and (b)
are from the tube in areas comparatively free of corrosion and covered with corrosion, respectively
(spectrum (a) is from near the area of the SEM photo of Figure 9(a)). In spectrum (a), the sulfur and
phosphorous indications are consistent with the sulfuric and phosphoric acid mixture being the cause of
the cracking. Spectrum (b) is consistent with the presence of all the chemicals applied to the tube, which
were sulfuric acid, phosphoric acid, sodium hydroxide, and chromic acid. This indicates that identification
of the most obvious and heavy corrosion product does not necessarily identify the specific cause of
cracking.

Spectra (c) and (d) arc from specimen #10 in areas comparatively corrosion-free and covered with
corrosion, respectively (spectrum (c) is from near the area of the SEM photo of Figure 10(a)). In
spectrum (c), a phosphorous indication can be seen, and perhaps a sulfur indication, although it has not
been designated. Spectrum (d), of a heavy corrosion area, includes clear indications of phosphorus, sulfur,
and oxygen. The presence of oxygen is evidence that the corrosion product includes an oxide of 3ulfur,
phosphorous, or perhaps iron.

The results suggest, as in any study of environmental cracking, that cracking could be avoided by
eliminating the aggressive environment or by eliminating or reducing the tensile stress. Neither the acid
nor the residual stress could be eliminated without significant changes in the design and manufacturing
process of the component. However, the concentration of the stress by the notch can be reduced with
relatively little bother. Referring to a compendium of stress concentration factors (ref 10), if the 9.8-mm
depth of the notch remained the same and the notch radii were increased to a significant portion of the
depth, say 8 mm, the result would be a k - 2.16. Thus, by replacing the nearly square cornered notch
with one approaching a semicircle, the maximum stress would reduce to 36 percent of its former value.
This would significantly reduce the likelihood of environmental cracking and failure of the tube by
reducing both the concentrated residual stress, which initiates and drives the cracking, and the thermal
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stress, which may accelerate the initiation process. An added bonus would be improved nondestructive

inspection access to cracking, should it occur.

SUMMARY AND CONCLUSIONS

The following are the key results and conclusions of the work regarding the environmental
cracking in the tube and the associated modeling tests:

1. Hydrogen stress cracking was identified as the cause of the tube cracking and was
modeled in bolt-loaded compact specimen tests of the same material and environment.
Overstrain residual stress, concentrated at an OD) notch, provided the sustained tensile
stress; a mixture of concentrated sulfuric and phosphoric acids at 54C was the aggressive
environment.

2. Modeling tests showed fast environmentally-controlled cracking, with several millimeters
of growth occurring typically in three minutes at applied K levels above 80 MPa'Vm. A
threshold of environmental cracking was observed following 1540 hours of acid exposure;
three tests at different initial K levels resulted in threshold values of 16 to 19 MPa-im. A
da/dt versus K plot of results showed the classic phase 1-Im3 environmental cracking
behavior.

3. Scanning electron microscope fractography and energy dispersive x-ray spectra of tube and
model specimen fracture surfaces corroborated the fracture mechanics test results.
Secoadary cracking and intergranular cracking were observed in the few areas of the
fracture surface not obscured by corrosion p-oduct` Spectra of the tube and modeling
surfaces showed clear sulfur and phosphorous indications in the areas in which secondary
and intergranular cracking were observed.

4. Thermal stresses concentrated by the notch were proposed as the source of the critical
loading that followed environmental contact and broke the protective layers, and thereby
accelerated the environmental cracking of the tube.

The following are the key results regarding the development of new test and analysis procedures
for environmental cracking studies:

1. A new K expression was developed for the H/W a 0.486 bolt-loaded specimen that is
simpler, a better fit to Newman's numerical results, and fits a wider range of a/W,
including the deep crack limit solution for this specimen.

2. A new criterion was developed for the specimen size required to maintain plane.strain
constraint for displacement-loaded compact specimens. The similar form of the
relationships for the Irwin plastic zone and the K limit for the specimen resulted in a
simple size criterion.

3. A floating five-point average da/d" •alculatlon procedure gave a good description of
environmental crack growth for a bolt-loaded specimen.
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